Multiple instance learning with bag dissimilarities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple instance learning with bag dissimilarities

Multiple instance learning (MIL) is concerned with learning from sets (bags) of objects (instances), where the individual instance labels are ambiguous. In this setting, supervised learning cannot be applied directly. Often, specialized MIL methods learn by making additional assumptions about the relationship of the bag labels and instance labels. Such assumptions may fit a particular dataset, ...

متن کامل

Multiple-Instance Learning with Structured Bag Models

Traditional approaches to Multiple-Instance Learning (MIL) operate under the assumption that the instances of a bag are generated independently, and therefore typically learn an instance-level classifier which does not take into account possible dependencies between instances. This assumption is particularly inappropriate in visual data, where spatial dependencies are the norm. We introduce her...

متن کامل

Multi-instance Learning with Discriminative Bag Mapping

Multi-instance learning (MIL) is a useful tool for tackling labeling ambiguity in learning because it allows a bag of instances to share one label. Bag mapping transforms a bag into a single instance in a new space via instance selection and has drawn significant attention recently. To date, most existing work is based on the original space, using all instances for bag mapping, and the selected...

متن کامل

A bag-to-class divergence approach to multiple-instance learning

In multi-instance (MI) learning, each object (bag) consists of multiple feature vectors (instances), and is most commonly regarded as a set of points in a multidimensional space. A different viewpoint is that the instances are realisations of random vectors with corresponding probability distribution, and that a bag is the distribution, not the realisations. In MI classification, each bag in th...

متن کامل

Multiple-instance learning with pairwise instance similarity

Multiple-Instance Learning (MIL) has attracted much attention of the machine learning community in recent years and many real-world applications have been successfully formulated as MIL problems. Over the past few years, several Instance Selection-based MIL (ISMIL) algorithms have been presented by using the concept of the embedding space. Although they delivered very promising performance, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2015

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2014.07.022